Performance analysis of a mirror symmetrical dielectric totally internally reflecting concentrator for building integrated photovoltaic systems
نویسندگان
چکیده
This paper presents a mirror symmetrical dielectric totally internally reflecting concentrator (MSDTIRC). Here, its electrical and optical performances are investigated for building integrated photovoltaic applications. This concentrator is designed to tackle two issues: (i) providing sufficient gain in order to increase the electrical output of a solar photovoltaic (PV) system and (ii) reducing the size of the PV cell needed, hence minimising the cost of the system. These experiments carried out had the objective of investigating the characteristics of the cell with the concentrator, the angular performance of the structure, and the effect of temperature on the cell. In each case, the current–voltage (I–V) characteristics and the power–voltage (P–V) characteristics are plotted and analysed. An outdoor experiment was also conducted to verify the results obtained from the indoor experiments. The MSDTIRC-PV structure is capable of providing a maximum power concentration of 4.2 when compared to a similar cell without the concentrator. The deviation of the concentration factor from the geometrical concentration gain (4.9 ), is mainly due to manufacturing errors, mismatch losses and thermal losses. 2013 Elsevier Ltd. All rights reserved.
منابع مشابه
Mirror symmetrical dielectric totally internally reflecting concentrator for building integrated photovoltaic systems
This paper describes a novel type of solar concentrator – a mirror symmetrical dielectric totally internally reflecting concentrator (MSDTIRC). This new concentrator type has been designed to satisfy the following objectives: (i) to provide optimum gain in two different planes, therefore increasing the electrical output of a solar photovoltaic (PV) system, and (ii) to reduce the amount of the P...
متن کاملReview on Solar Thermal Power Concentrators
Submit Manuscript | http://medcraveonline.com Compound Parabolic Concentrator; DCPC: Dielectric Photovoltaic Thermal Compound Parabolic Concentrator; Aa: Aperture Area; Ar: Receiver of Area; HTF: Heat Transfer Fluid; DTIRC: Dielectric Totally Internally Reflecting Concentrator; TIR: Total Internal Reflection; MSDTIRC: Mirror Symmetrical Dielectric Totally Internally Reflecting Concentrator; FHC...
متن کاملReview on Solar Thermal Power Concentrators
Submit Manuscript | http://medcraveonline.com Compound Parabolic Concentrator; DCPC: Dielectric Photovoltaic Thermal Compound Parabolic Concentrator; Aa: Aperture Area; Ar: Receiver of Area; HTF: Heat Transfer Fluid; DTIRC: Dielectric Totally Internally Reflecting Concentrator; TIR: Total Internal Reflection; MSDTIRC: Mirror Symmetrical Dielectric Totally Internally Reflecting Concentrator; FHC...
متن کاملOptimisation of Concentrator in the Solar Photonic Optoelectronic Transformer: Comparison of Geometrical Performance and Cost of Implementation
The Solar Photonic Optoelectronic Transformer (SPOT) is one of the components of the SolarBrane, a Building Integrated Photovoltaic (BIPV) system developed by SolarEmpower Ltd. The SPOT employs 2-D linear dielectric totally internally reflecting concentrator (DTIRC) to increase the collection efficiency of the sun’s rays and reduce the amount of photovoltaic (PV) material used. In this paper, a...
متن کاملOptimised Concentrator for the Solar Photonic Optoelectronic Transformer: First Optimisation Stage
Collecting and storing solar energy will be a key part of efficient renewable technologies for buildings of the future, particularly in the Middle East. This paper presents the topic of improved properties of optical concentrators to achieve increased solar energy gain. The Solar Photonic Optoelectronic Transformer (SPOT) system is one of the components of the SolarBrane, a Building Integrated ...
متن کامل